Quiz 4-18 September 2019

Instructions. You have 15 minutes to complete this quiz. You may use your calculator. You may not use any other materials (e.g., notes, homework, books).

Show all your work. To receive full credit, your solutions must be completely correct, sufficiently justified, and easy to follow.

Problem	Weight	Score
1	1	
2	1	
3	1	
4	1	
5	1	
Total		$/ 50$

Recall the national income model from Lesson 7, with marginal propensity to consume $m=\frac{1}{2}$ and accelerator $\ell=\frac{1}{6}$:

$$
\begin{aligned}
T_{n} & =C_{n}+I_{n}+G_{n} \\
C_{n+1} & =\frac{1}{2} T_{n} \\
I_{n+1} & =\frac{1}{6}\left(C_{n+1}-C_{n}\right) \\
G_{n} & =1
\end{aligned}
$$

where at time n, T_{n} is the total national income, C_{n} is the amount of consumer expenditures, I_{n} is the amount of private investment, and G_{n} is the amount of government expenditures. We showed that we can rewrite this model as the following DS:

$$
\begin{equation*}
T_{n+2}=\frac{7}{12} T_{n+1}-\frac{1}{12} T_{n}+1 \quad n=0,1,2, \ldots \tag{*}
\end{equation*}
$$

Problem 1. Find the general solution to the DS (\star).

- Most of you answered this correctly.
- Be careful when identifying and plugging in a, b, c.

Problem 2. Suppose $C_{0}=4$ and $I_{0}=5$. Find the IC for the DS ($*$).

- See Example 1c in Lesson 7 for a similar example.
- Remember the definition of the IC for a second order DS (Lesson 6).
- Some of you went ahead and found the particular solution that satisfies the IC. That was not necessary for this problem.

For Problems 3, 4 and 5, consider the following DS:

$$
A_{n+2}=\frac{1}{2} A_{n+1}-\frac{3}{64} A_{n}+35 \quad n=0,1,2, \ldots
$$

The general solution to the $\mathrm{DS}(\star \star)$ is

$$
A_{n}=c_{1}\left(\frac{1}{8}\right)^{n}+c_{2}\left(\frac{3}{8}\right)^{n}+64
$$

Problem 3. Show that the fixed point of the DS $(\star \star)$ is 64 .

- Most of you answered this correctly.
- Note that in general, the limit of A_{n} as $n \rightarrow \infty$ does not necessarily give you the fixed point of the DS.

Problem 4. Is the system stable, unstable, or neither? Briefly explain.

- Be careful and precise with your explanations. For example, the statement "the values of c_{1} and c_{2} approach 0 as n approaches ∞ " doesn't make sense here $-c_{1}$ and c_{2} are constants.
- Be careful with the free constants c_{1} and c_{2} :
- In order for the DS to be stable, A_{n} must approach a finite value as $n \rightarrow \infty$ for all initial conditions. This means $\lim _{n \rightarrow \infty} A_{n}$ must be finite no matter what c_{1} and c_{2} are.
- In order for the DS to be unstable, $\left|A_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$ for some initial conditions. This means $\lim _{n \rightarrow \infty} A_{n}=$ ∞ for at least one combination of values of c_{1} and c_{2}.

Problem 5. Is the fixed point 64 attracting, repelling, or neither? Briefly explain.

- The notes for Problem 4 apply here as well.
- This is a second-order linear DS with $a+b \neq 1$. So, there is a unique fixed point.
- To show the fixed point is attracting, you need to show that A_{n} approaches the fixed point as $n \rightarrow \infty$ for all initial conditions (Lesson 8).
- To show the fixed point is repelling, you need to show that $\left|A_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$ for some initial conditions (Lesson 8).

The general solution of the second order linear DS $A_{n+2}=a A_{n+1}+b A_{n}+c, n=0,1,2, \ldots$ is

$$
\begin{array}{ll}
A_{n}=c_{1} r^{n}+c_{2} s^{n}+\frac{c}{1-a-b} & \text { if } a+b \neq 1 \text { and } r \neq s \\
A_{n}=\left(c_{1}+c_{2} n\right) r^{n}+\frac{c}{1-a-b} & \text { if } a+b \neq 1 \text { and } r=s \\
A_{n}=c_{1}(a-1)^{n}+c_{2}+\frac{c}{2-a} n & \text { if } a+b=1 \text { and } a \neq 2 \\
A_{n}=c_{1}+c_{2} n+\frac{c}{2} n^{2} & \text { if } a+b=1 \text { and } a=2, b=-1
\end{array}
$$

where r and s are the roots of the characteristic equation $x^{2}=a x+b$.

